Aprimorando a Recordação de Contexto na Geração Aumentada por Recuperação
A geração aumentada por recuperação (RAG) emergiu como um método fundamental para integrar grandes modelos de linguagem (LLMs) em aplicações comerciais especializadas, permitindo a infusão de dados proprietários nas respostas do modelo. Apesar de sua eficácia durante a fase de prova de conceito (POC), os desenvolvedores frequentemente enfrentam quedas significativas de precisão ao transitar o RAG para a produção. Esse problema é particularmente pronunciado durante a fase de recuperação, onde o objetivo é buscar com precisão o contexto mais relevante para uma determinada consulta, uma métrica conhecida como recordação de contexto. Este artigo explora estratégias para aprimorar a recordação de contexto por meio da personalização e ajuste fino de modelos de incorporação, melhorando, em última análise, o desempenho do RAG em aplicações do mundo real.
O RAG opera em duas etapas principais: recuperação e geração. Na fase de recuperação, o modelo converte texto em vetores, indexa, recupera e reclassifica esses vetores para identificar as melhores correspondências. No entanto, falhas nessa fase podem levar a contextos relevantes perdidos, resultando em uma menor recordação de contexto e saídas de geração menos precisas. Uma solução eficaz é adaptar o modelo de incorporação, que é projetado para entender as relações entre dados textuais, para produzir incorporações específicas para o conjunto de dados em uso. Esse ajuste fino permite que o modelo gere vetores semelhantes para frases semelhantes, aprimorando sua capacidade de recuperar contextos altamente relevantes para a consulta.
Para melhorar a recordação de contexto, é essencial preparar um conjunto de dados personalizado que reflita os tipos de consultas que o modelo encontrará. Isso envolve extrair uma variedade de perguntas da base de conhecimento, parafraseá-las para variabilidade e organizá-las por relevância. Além disso, a construção de um conjunto de dados de avaliação ajuda a avaliar o desempenho do modelo em um cenário realista. Ao empregar um Avaliador de Recuperação de Informação, os desenvolvedores podem medir métricas como Recall@k e Precision@k para avaliar a precisão da recuperação. Em última análise, o ajuste fino do modelo de incorporação pode levar a melhorias substanciais na recordação de contexto, garantindo que o RAG permaneça preciso e confiável em ambientes de produção.