Fine-Tuning Llama 3.2 11B with Q-LoRA for Extractive Question Answering

星期二, 十一月 26, 2024 12:00 凌晨
1

Large Language Models (LLMs) have become essential tools in natural language processing, capable of handling a variety of tasks. However, due to their broad training, they may not excel in specific applications without further adaptation. Fine-tuning techniques, such as Q-LoRA, allow researchers to tailor pre-trained models like Llama 3.2 11B for particular tasks, such as extractive question answering. This article outlines the process of fine-tuning Llama 3.2 11B using Q-LoRA on the SQuAD v2 dataset, showcasing the performance enhancements achieved through this method.

LoRA, or Low-Rank Adaptation, is a technique that introduces new weights to an existing model without altering the original parameters. By adding adapter weights that adjust the outputs of certain layers, LoRA enables models to retain their pre-trained knowledge while acquiring new capabilities tailored to specific tasks. In this experiment, the focus is on fine-tuning Llama 3.2 11B for extractive question answering, aiming to extract precise text segments that answer user queries directly, rather than summarizing or rephrasing the content. The experiment was conducted on a Google Colab platform utilizing an A100 GPU, with the Hugging Face Transformers library facilitating the implementation.

The results of the fine-tuning process were promising, demonstrating a significant boost in the model’s performance on the validation set. The BERT score improved from 0.6469 to 0.7505, while the exact match score rose from 0.116 to 0.418. These enhancements indicate that the Q-LoRA technique effectively adapts the Llama 3.2 11B model for extractive question answering tasks. This article serves as a guide for researchers looking to apply similar methods to other models and tasks, highlighting the potential of fine-tuning in the realm of natural language processing.

Related News

io.net Partners with OpenLedger to Enhance AI Model Development cover
21 小時前
io.net Partners with OpenLedger to Enhance AI Model Development
This week, decentralized distributed GPU resource platform io.net announced a strategic partnership with OpenLedger, a data blockchain specifically designed for artificial intelligence (AI). This collaboration will enable OpenLedger to utilize io.net's global GPU compute resources, enhancing its ability to refine and train AI models. Known as the Internet of GPUs, io.net provides a powerful network of distributed GPU resources, allowing OpenLedger to accelerate the development of its AI models and empowering developers to create more efficient AI-based decentralized applications (DApps). According to Tausif Ahmad, Vice President of Business Development at io.net, this partnership will provide OpenLedger with a reliable infrastructure to scale its AI models and unlock new use cases, reinforcing its position as an innovative provider in the decentralized AI space. In addition to providing GPU resources, io.net's infrastructure will support the inference and hosting of AI models, ensuring optimal performance and scalability. This partnership is expected to enhance OpenLedger's reputation as a leading provider of reliable datasets, fueling innovation at the intersection of blockchain and AI. The collaboration aims to create high-quality data securely and efficiently while driving innovation and performance. A team member from OpenLedger emphasized that leveraging io.net's GPU infrastructure will allow users to fine-tune AI models more efficiently, ultimately leading to the development of trustworthy and explainable AI models. A significant factor in OpenLedger's choice of io.net as its GPU resource provider is the cost-effective and scalable compute solutions offered. This partnership will enable OpenLedger to expand its services without the constraints of high costs associated with centralized cloud providers. By processing larger datasets and developing AI models with unprecedented efficiency, OpenLedger aims to push the boundaries of decentralized AI innovation. Ultimately, this partnership aligns with OpenLedger's mission to foster an open, collaborative data environment while promoting the adoption of blockchain-powered AI solutions.
The AI Lab Partners with Theta EdgeCloud to Enhance AI Education cover
21 小時前
The AI Lab Partners with Theta EdgeCloud to Enhance AI Education
The AI Lab, a leading e-learning provider in South Korea, has recently entered into a multi-year agreement with Theta EdgeCloud, marking a significant step in enhancing its educational offerings in Artificial Intelligence (AI) and Data Analysis (DA). This partnership allows The AI Lab to leverage Theta EdgeCloud's distributed GPU resources, which will facilitate advanced AI education, model training, and generative AI applications. With a strong focus on hands-on experiences and interactive content, The AI Lab aims to deliver high-quality education through its innovative platform, CodingX, recognized for its effectiveness in teaching AI and coding skills globally. The collaboration with Theta EdgeCloud is expected to bring several advantages to The AI Lab. By utilizing on-demand GPU resources, the institution can enhance curriculum flexibility, allowing for seamless integration of AI into its educational programs. Additionally, the partnership is set to lower operational costs through Theta's distributed infrastructure, enabling cost-effective scaling of their services. Most importantly, the integration of AI-driven learning methodologies will facilitate personalized learning experiences, tailored to meet the unique needs of each student, thereby improving overall performance. Theta EdgeCloud has been rapidly expanding its customer base, recently partnering with prestigious institutions such as Seoul National University and Peking University. This growth underscores the increasing demand for scalable and cost-effective technology solutions in the education sector. John Choi, CEO of The AI Lab, expressed confidence in the partnership, highlighting Theta's strong reputation among South Korean universities and its potential to significantly expand The AI Lab's operations in the coming years. This collaboration is poised to meet the rising demand for technology skills in an AI-driven future, positioning The AI Lab as a key player in the evolving educational landscape.
Stratos 與 Cortensor 合作以增強去中心化的 AI 基礎設施 cover
2 天前
Stratos 與 Cortensor 合作以增強去中心化的 AI 基礎設施
在去中心化 AI 領域的一個重要發展中,Stratos 宣布與去中心化 AI 推理網絡的領導者 Cortensor 建立合作夥伴關係。這一合作旨在通過將 Stratos 強大的去中心化存儲和流媒體解決方案整合到 Cortensor 創新的 AI 生態系統中來增強去中心化的 AI 基礎設施。該合作夥伴關係將提供安全且可擴展的數據存儲,確保公共和私有 AI 工作負載都能無縫且可靠地運行,從而提高整體網絡性能。 這一合作的主要特點之一是引入實時推理流媒體能力。Stratos 的先進視頻流媒體 API 將使 Cortensor 能夠提供即時的 AI 推理輸出,促進動態應用程序和用戶驅動的任務。這一增強預計將優化 AI 工作負載的性能,因為 Stratos 的高吞吐量基礎設施將改善節點之間的通信,確保即使在高需求環境中也能有效流動數據。這是使先進 AI 工具變得更易於獲得和成本效益更高的重要一步。 兩家公司對去中心化 AI 的未來有著共同的願景,Cortensor 的推理證明(PoI)和有用工作證明(PoUW)系統驗證任務並獎勵貢獻者的有意義工作。Stratos 擁有支持 Web3 和 AI 解決方案的去中心化基礎設施,擁有超過 900 個活躍的全球存儲節點和 21 PB 的容量。這一合作夥伴關係不僅體現了他們對創新的承諾,還旨在為企業、開發者和社區驅動的礦工開啟新的可能性,最終建立一個更具包容性和可擴展的 AI 生態系統。請繼續關注更多更新,因為他們將繼續推動去中心化 AI 解決方案的邊界。
增強檢索增強生成中的上下文回憶 cover
5 天前
增強檢索增強生成中的上下文回憶
檢索增強生成(RAG)已成為將大型語言模型(LLMs)整合到專業商業應用中的關鍵方法,使專有數據能夠融入模型的回應中。儘管在概念驗證(POC)階段效果顯著,但開發人員在將RAG轉移到生產環境時,經常面臨顯著的準確性下降。這一問題在檢索階段尤為明顯,該階段的目標是準確獲取與給定查詢最相關的上下文,這一指標被稱為上下文回憶。本文深入探討了通過自定義和微調嵌入模型來增強上下文回憶的策略,最終改善RAG在現實應用中的表現。 RAG主要分為兩個步驟:檢索和生成。在檢索階段,模型將文本轉換為向量,索引、檢索並重新排序這些向量以識別最佳匹配。然而,這一階段的失敗可能導致錯過相關上下文,從而導致上下文回憶降低和生成輸出不準確。一個有效的解決方案是調整嵌入模型,該模型旨在理解文本數據之間的關係,以生成特定於所使用數據集的嵌入。這種微調使模型能夠為相似的句子生成相似的向量,增強其檢索與查詢高度相關的上下文的能力。 為了改善上下文回憶,準備一個量身定制的數據集至關重要,該數據集反映模型將遇到的查詢類型。這涉及從知識庫中提取多樣化的問題,對其進行改寫以增加變化,並根據相關性進行組織。此外,構建評估數據集有助於評估模型在現實環境中的表現。通過使用信息檢索評估器,開發人員可以測量像Recall@k和Precision@k這樣的指標來評估檢索的準確性。最終,微調嵌入模型可以顯著改善上下文回憶,確保RAG在生產環境中保持準確和可靠。
用物聯網技術革新農業 cover
6 天前
用物聯網技術革新農業
物聯網技術在農業中的整合正在改變這個行業,使農民能夠做出基於數據的明智決策,從而提高生產力和可持續性。全球智能農業市場預計到2026年將達到200億美元,這主要得益於物聯網解決方案在農場的日益普及。這些技術優化了作物和畜牧管理的各個方面,幫助農民降低成本,同時提高產量和環境管理。隨著物聯網設備的普及,它們提供了顯著的優勢,包括資源管理的自動化以及對天氣和土壤條件等關鍵因素的實時數據收集。 像氣象站和土壤傳感器這樣的物聯網設備在智能農業中扮演著關鍵角色。氣象站提供有關溫度、濕度和降水量的基本數據,使農民能夠及時調整灌溉和種植計劃。土壤傳感器提供有關濕度水平的實時洞察,優化水的使用和施肥策略。此外,牲畜監控項圈確保了對動物健康和位置的主動管理。通過根據實時數據自動化灌溉和資源分配,農民可以節省資源並增強作物健康,最終導致利潤增加。 Chirp的平台通過將這些物聯網設備整合到一個由單一儀表板管理的系統中,提升了這些設備的有效性。區塊鏈技術的引入進一步加強了數據管理,確保了由物聯網設備生成的大量信息的安全、不可篡改的存儲和可追溯性。Chirp的Blackbird礦工為這些設備提供長距離連接,促進了在大範圍內可靠的數據傳輸,而無需單獨的互聯網連接。這種物聯網技術的無縫整合使Chirp成為農民的重要合作夥伴,使他們能夠應對挑戰並抓住在不斷發展的農業環境中的新機遇。
VentureMind AI 與 Theta EdgeCloud 合作提升 AI 和機器人技術能力 cover
6 天前
VentureMind AI 與 Theta EdgeCloud 合作提升 AI 和機器人技術能力
在 AI 和區塊鏈交匯的令人興奮的發展中,VentureMind AI 宣布與 Theta EdgeCloud 建立合作夥伴關係。這一合作旨在利用 Theta 的去中心化、低延遲計算和串流資源來增強 VentureMind AI 的能力。通過整合 EdgeCloud,VentureMind AI 將能夠擴展其 AI 工具,優化視頻渲染,並提供實時機器人控制,顯著改善其在建築和安全等領域的服務。這一合作標誌著在創建一個綜合生態系統方面邁出了重要一步,該生態系統將 AI 創新與去中心化金融和先進機器人技術相結合。 VentureMind AI 是一個開創性的平臺,允許用戶創建、鑄造和交易 AI 工具作為 NFT,提供獨特的所有權和收入潛力。該平臺還具有自定義自主代理構建器,使用戶能夠啟動代幣化社區並管理市場創造活動。自 2023 年 6 月成立以來,EdgeCloud 在學術界和企業界都獲得了關注,像首爾國立大學和 GenAI search Liner 等機構利用其基礎設施推進 AI 研究和應用。 通過整合 Theta EdgeCloud,VentureMind AI 將重新定義 AI、機器人技術和 Web3 領域的可能性。這一合作將促進 AI 創新的可擴展計算、可靠的機器人控制、成本效益高的視頻處理,以及對 NFT 和自主工具的增強整合。VentureMind AI 由 Jermaine Anugwom 創立,迅速從一系列專業的 AI 工具發展為一個強大的平臺,結合了區塊鏈技術和代幣經濟學,將自己定位為新興 Web3 環境中的領導者。